中華民國國家標準 CNS

工業用乙醇

Ethanol for industrial use

CNS 1397:2022 K1059

中華民國 50 年 07 月 31 日制定公布 Date of Promulgation:1961-07-31

中華民國年月日修訂公布 Date of Amendment: - -

本標準非經經濟部標準檢驗局同意不得翻印

目錄

節次	頁次
前言	1
1. 適	用範圍
2. 引	用標準
3. 品	質
4. 取	樣
5. 試	驗法5
6. 標	示
附錄	A(規定)工業用乙醇試驗法-通則9
附錄	B(規定)工業用乙醇試驗法-以酚酞為指示劑之鹼度偵檢或酸度測定11
附錄	C(規定)工業用乙醇試驗法-少量羰基化合物含量估計之光度法13
附錄	D(規定)工業用乙醇試驗法-中等量羰基化合物含量估計之滴定法16
附錄	E(規定)工業用乙醇試驗法-醛類含量測定之目視比色法18
附錄	F(規定)工業用乙醇試驗法-水互溶性試驗
附錄	G(規定)工業用乙醇試驗法-甲醇含量[0.01 %(V/V)~0.20 %(V/V)]測定之
	光度法
附錄	H(規定)工業用乙醇試驗法-甲醇含量[0.10 %(V/V)~1.50 %(V/V)]測定之
	目視比色法
附錄	I(規定)工業用乙醇試驗法-酯類含量測定之皂化後滴定法28
附錄	J(規定)工業用乙醇試驗法-烴類含量測定之蒸餾法30
附錄	K(規定)工業用乙醇試驗法-糠醛偵檢試驗34
附錄	L(規定)工業用乙醇試驗法-過錳酸鉀反應時間測定35
參考	資料

CNS 1397:2022

前言

本標準係依標準法之規定,經國家標準審查委員會審定,由主管機關公布之中華民國國家標準。CNS 1397:1975 已經修訂並由本標準取代。

依標準法第四條之規定,國家標準採自願性方式實施。但經各該目的事業主管機關引 用全部或部分內容為法規者,從其規定。

本標準並未建議所有安全事項,使用本標準前應適當建立相關維護安全與健康作業, 並且遵守相關法規之規定。

本標準之部分內容,可能涉及專利權、商標權與著作權,主管機關及標準專責機關不 負責任何或所有此類專利權、商標權與著作權之鑑別。

1. 適用範圍

本標準適用於工業用之未變性乙醇,不適用於藥用材料。(參照 BS 507,討論後刪除括弧內文字)

備考 1. 本標準之觀測值或計算值應依 CNS 80000-1 修整至最接近之單位。

備考 2. 本標準中使用的所有材料之安全事項,參照安全資料表(SDS)及相關法規之 規定。

2. 引用標準

下列標準因本標準所引用,成為本標準之一部分,下列引用標準適用最新版(包括補充增修)。

CNS 6205 液態化學品 20℃ 時密度測定法(對應 ISO 758, 討論後刪除括弧內文字)

CNS 7311 化學分析用玻璃過濾器

CNS 14853 酒類檢驗法-雜醇油之測定CNS 14849 酒類檢驗法-酒精度之測定

ISO 759 Volatile organic liquids for industrial use - Determination of dry

residue after evaporation on a water bath - General method

ISO 760 Determination of water – Karl Fischer method (General method)

ISO 2211 Liquid Chemical products - Measurement of colour in Hazen units

(platinum-Cobalt scale)

ISO 4793 Laboratory sintered (fritted) filters - Porosity grading, classification

and designation

3. 品質

工業用乙醇之品質須符合表 1 規定。

表 1 工業用乙醇之品質

	要求					
性質	BS 507	CNS 1397	GB/T 6820		TIS640 Part 2-2553 (2010)泰國	
乙醇含量[%(V/V)]	≥ 94.7		≥ 95.0	≥ 99.5	≥ 94.7	≥ 99.5
外觀	透明且無懸 浮物質	無色透明 無雜臭	透明液體 梯雜質	無可見機	透明、無色物之液體。	色且不含異
比重		0.8168 (15/15 °C)	_	_	_	_
密度	_	_	_	_	_	_
蒸發殘渣[%(m/m)]	≤ 0.005	≤ 0.008	≤ 0.003	≤ 0.0025	≤ 0.005	
含水量[%(m/m)]	_	_	_	$0.1 \sim 0.5$	_	_
顏色(Hazen單位)	≦ 15	_	≤ 10	≤ 5	≦ 15	≦ 15

表 1 工業用乙醇之品質(續)

	要求					
性質	(BS 507)	CNS 1397	GB /T	6820	泰國TIS640 Part 2-2553 (2010)	
鹼度/酸度						
一鹼度	對酚酞不呈 鹼性	_	_	_	對酚酞不呈鹼性	
- 酸度(以乙酸計)[%(m/m)]	≤ 0.005	0.0015	≤ 0.003	≤ 0.002	≤ 0	.005
羰基化合物含量 (以乙醛計) [%(m/m)]	≤ 0.10	ı		_	≤ 0.10	
醛類(以乙醛計) [%(m/m)]		≤ 0.0015	≤ 0.002	≤ 0.0015		
水 互 溶 性 5 %(V/V)濃度	無乳光	無乳光	無乳光	無乳光	無乳光	無乳光
甲醇含量 [%(V/V)]	≤ 0.05	極微量	≤ 0.02	≤ 0.005	0.05	
酯 類 含 量 [%(m/m)]	_		_	_	_	_
烴 類 含 量 [%(m/m)]	_	_	_	_	_	_
糠醛	_	不得檢出	_	_	_	_
過 錳 酸 鉀 反 應 時間(min)	15以上	10以上	15以上	_	_	_
雜醇油 (g/100 mL)	_	≤ 0.004		_		_
重金屬(銅、鐵、鉛等離子)	_	不得檢出	_	_	_	_
氯化物	_	不得檢出	_	_	_	_
硫酸鹽	_	_	_	_	_	_

備考: "-"表示由當事人間協議之。

JIS k8101 タノール(99・5)(試薬)

JIS k8102 タノール(95)(試薬)

4. 取樣

依 A.2 之規定。

5. 試驗法

5.1 乙醇濃度

依 CNS 14849 規定之酒精計法,測定 20 ℃時之乙醇濃度。

5.2 外觀

目視檢查

5.3 比重

依 CNS 14849 規定之比重瓶法。

5.4 密度

依 A.3 之規定。

5.5 蒸發殘渣

依 A.4 之規定。

5.6 含水量

依 A.5 之規定。

5.7 顔色

依 A.6 之規定。

5.8 鹼度/酸度

依附錄 B 之規定。

5.9 羰基化合物含量

依附錄 C 或附錄 D 之規定。

5.10 醛類含量

依附錄 E 之規定。

5.11 水互溶性

依附錄F之規定。

5.12 甲醇含量

依附錄G或附錄H之規定。

5.13 酯類含量

依附錄I之規定。

5.14 烴類含量

依附錄J之規定。

5.15 醛糠含量

依附錄K之規定。

5.16 過錳酸鉀反應時間

依附錄 L 之規定。

5.17 雜醇油

依 CNS 14853 之規定。

5.18 重金屬(參照 JAAS001: 2012 之 6.6, 討論後刪除括弧內文字)

以硫化鈉呈色試驗,確認銅、鐵、鉛等離子。

5.18.1 試樣

試樣 5 mL。

5.18.2 試驗裝置

- (a) 試管。
- (b) 具刻度量筒:容量 50 mL。
- (c) 全量吸量管:容量 5 mL。
- (d) 具刻度吸量管:容量 1 mL 及 10 mL。
- (e) 滴管。
- (f) 按鈕式微量吸量管。
- (g) 褐色瓶。

5.18.3 試藥

(a) 硫化鈉溶液

將 5 g 硫化鈉九水合物(Na₂S·9H₂O)溶解於 10 mL 蒸餾水與 30 mL 甘油 之混合液中。此溶液應儲存在幾乎已滿的棕色瓶中,密封並避免陽光直 接照射,配製後使用不得超過 3 個月。

- (b) 九水合硫化鈉:試藥級。
- (c) 甘油:試藥級。
- (d) 氨水:試藥級。

5.18.4 步驟

試樣加入蒸餾水,使乙醇含量達到 90 %(V/V),取 5 mL 置入試管中,加入 3 滴硫化鈉溶液及 2 滴氨水並攪拌之,如於 1 min 內呈色,則視為含有重金屬。如未呈色時,則[銅離子濃度] ≤ 0.4 mg/L,[鐵離子濃度] ≤ 0.7 mg/L。

備考:如含有極微量重金屬,因呈色很淺,須仔細觀察。

呈色非常淺時,亦可依下述步驟辨別:

- (a) 添加硫化鈉溶液及氨水之試樣,與未添加(空白)之試樣並排比較。
- (b) 將白色板與黑色板分別置於試管背面與底部進行觀察。

5.18.5 表示法

檢出或未檢出。

5.19 氯化物(參照 JAAS001: 2012 之 6.7, 討論後刪除括弧內文字)

以硝酸銀呈色試驗,確認氯化物。

5.19.1 試樣

試樣 10 mL。

5.19.2 試驗裝置

- (a) 試管。
- (b) 具刻度量筒:容量 100 mL。
- (c) 全量吸量管:容量 0.5 mL、1 mL 及 10 mL。
- (d) 按鈕式微量吸量管。
- (e) 褐色瓶。

5.19.3 試藥

(a) 硝酸銀溶液

1.75 g 硝酸銀以蒸餾水溶解並稀釋至 100 mL,將此溶液儲存於褐色瓶中。可以使用任何市售之同等品。

(b) 硝酸

硝酸濃度 65 %, 密度約 1.40 g/mL。

(c) 硝酸銀 試藥級。

5.19.4 步驟

取試樣 10~mL 置於試管中,加入 0.5~mL 硝酸級 1~mL 硝酸銀溶液,均勻攪拌之,如於 10~min 內呈現白濁,則視為含有氯化物。如未呈現白濁,則[氯離子濃度] $\leq 0.3~\text{mg/L}$ 。

備註:如含有極微量氯離子,因白濁非常輕微,須仔細觀察。

白濁非常輕微時,可依下述步驟辨別:

- (a) 添加硝酸與硝酸銀溶液之試樣,與未添加(空白)之試樣並排比較。
- (b) 將黑色板置於試管背面與底部進行觀察。

5.19.5 表示法

檢出或未檢出。

5.20 硫酸鹽(參照 JAAS001: 2012 之 6.8, 討論後刪除括弧內文字)

以氯化鋇呈色試驗,確認硫酸鹽。

5.20.1 試樣

試樣 5 mL。

5.20.2 試驗裝置

- (a) 試管。
- (b) 具刻度量筒:容量 100 mL。
- (c) 全量吸量管:容量 5 mL。
- (d) 具刻度吸量管:容量 1 mL 及 10 mL。
- (e) 按鈕式微量吸量管。
- (f) 滴瓶。

5.20.3 試藥

(a) 氯化鋇溶液

以蒸餾水將 12 g 氯化鋇溶解並稀釋至 100 mL。

(b) 二水合氯化鋇:試藥級。

5.20.4 步驟

試樣加入蒸餾水,使乙醇含量達到 90 %(V/V),取 5 mL 置入試管中,加入 5 mL 蒸餾水,加入 2 滴氯化鋇溶液,如於 5 min 內出現白濁,則視為含有硫酸鹽,。如未呈現白濁,則[硫酸根離子濃度]≤2mg/L。

備註:如含有極微量硫酸根離子,因白濁非常輕微,須仔細觀察。 白濁非常輕微時,可依下述步驟辨別:

- (a) 添加氯化鋇溶液之試樣,與未添加(空白)之試樣並排比較。
- (b) 將黑色板置於試管背面與底部進行觀察。

6. 標示

除依商品標示法相關法令規定外,包裝產品應於容器明顯處標明下列事項。

- (a) 產品名稱。
- (b) 製造年月或製造批號。
- (c) 淨重或淨體積。
- (d) 製造廠商名稱。
- (e) 其他有關注意事項。

附錄 A

(規定)

工業用乙醇試驗法一通則

A.1 適用範圍

本附錄規定工業用乙醇之 20 ℃時密度測定、水浴蒸發後乾殘渣測定、含水量測定 及顏色量測所使用的方法,並提供相關試驗法之一般說明。

A.2 取樣

將實驗室樣品存放於清潔、乾燥、氣密之具磨砂玻璃栓塞的玻璃瓶或瓶蓋內裝 有聚乙烯錐形嵌入物的螺旋蓋瓶,樣品幾近完全裝滿其容量,如須密封瓶子, 小心避免任何污染內容物之風險。

備考:產品進行規定之所有試驗時,樣品必須不少於 2,500 mL。

(◆瓶蓋內裝有聚乙烯錐形嵌入物的螺旋蓋瓶實物照片→討論後刪除括弧內文字)

A.3 20 ℃時密度測定

使用 CNS 6205 之規定方法。

A.4 水浴蒸發後乾殘渣測定

使用 ISO 759 之規定方法。

備考:如所得殘渣少於 0.001 %(m/m),則使用試樣 250 mL 重複測定,分多個小分量放入蒸發皿中,並以此試樣量計算結果。

A.5 含水量測定

使用 ISO 760 之規定方法。

A.6 顏色量測

使用 ISO 2211 之規定方法。

A.7 試驗報告

CNS 1397:2022

每一測定之試驗報告,應包含下列資訊。

- (a) CNS總號。
- (b) 樣品識別。
- (c) 結果與所使用之表示法。
- (d) 測定期間所發現之任何異常特徵。
- (e) CNS 1397 未規定之任何操作,或視為選擇性之任何操作。

附錄 B

(規定)

工業用乙醇試驗法一以酚酞為指示劑之鹼度偵檢或酸度測定

B.1 滴用範圍

本附錄規定工業用乙醇之鹼性偵檢法,如合適,可用於隨後之酸度測定法。 本方法適用於具酸度以乙酸(CH₃COOH)計為 0.0008 %(m/m)以上之產品。

B.2 方法概要

以不含二氧化碳之水稀釋試樣。

查核試驗溶液對酚酞是否呈鹼性或酸性,且適當時以氫氧化鈉標準體積溶液滴定測定酸度。

B.3. 試藥

分析過程僅能使用經認可之分析級試藥,以及新近製備不含二氧化碳之蒸餾水 或同等純度的水。

B.3.1 不含二氧化碳之水

將蒸餾水煮沸並使其在附有瓶塞之燒瓶中冷卻,且瓶塞連接內裝鹼石灰之乾燥管。

B.3.2 c(NaOH) = 0.1 mol/L 氫氧化鈉標準體積溶液。

B.3.3 5 g/L 酚酞乙醇溶液

將 0.5 g 酚酞溶解於 100 mL 之 95%(V/V)乙醇中,並加入氫氧化鈉標準體積溶液(B.3.2),直至獲得淡粉紅色。

B.4 器具

一般實驗室用器具及下列器具。

B.4.1 錐形瓶

硼矽玻璃,容量 500 mL,附有連接內裝鹼石灰之乾燥管的磨砂瓶塞。

B.4.2 滴定管

容量為 10 mL, 刻度準確至 0.02 mL。

B.5 步驟

B.5.1 試驗分樣

取試驗室樣品 100 mL±0.1 mL。

B.5.2 測定

將 100 mL 水(B.3.1)放入錐形瓶(B.4.1),加入 0.5 mL 酚酞溶液(B.3.3),如必要,加入數滴氫氧化鈉溶液(B.4.2)以恢復淡粉色。加入試驗分樣(B.5.1)及另外 0.5 mL 酚酞溶液(B.3.3)並記錄溶液是否呈鹼性;如為酸性,以氫氧化鈉溶液(B.3.2)滴定試驗溶液,每次加入後,以塞子塞住錐形瓶並旋轉其內容物,直至得到持續約 15 s 之紅色顏色。每次加入氫氧化鈉溶液後,塞子塞回原處,搖動錐形瓶中之內容物。

CNS 1397:2022

B.6 結果表示

B.6.1 鹼性產品

指出產品對酚酞是否呈鹼性。

B.6.2 酸性產品

酸度[% (m/m)],以乙酸(CH3COOH)計,依下式求得。

$$\frac{0.006 \times V}{\rho}$$

式中,V : 測定所使用氫氧化鈉溶液(4.2)體積(mL)

ρ : 樣品在 20 ℃ 時之密度(g/mL)(參照 A.3)

0.006 :乙酸相當於 c(NaOH)=0.100 mol/L 氫氧化鈉溶液 1 mL 之質量

(g)

備考:如所使用標準體積溶液濃度與試藥規定濃度不一致,宜進行適當修正。

附錄C

(規定)

工業用乙醇試驗法一少量羰基化合物含量估計之光度法

C.1 適用範圍

本附錄規定工業用乙醇中存在少量羰基化合物含量估計之光度法。。

本方法適用於具羰基化合物含量以乙醛計為 0.01 %(m/m)以上之產品。

備考:此種工業上使用之方法,僅可測定在規定條件下發生反應之羰基化合物。

C.2 方法概要

於酸性介質中,試驗分樣中之羰基化合物與 2,4-二硝基苯肼反應,形成相對應之 2,4-二硝基苯腙,使溶液呈鹼性後顯現紅色。

於波長約 445 nm 處對此種红色進行光度測量。

C.3 試藥

分析過程僅能使用經認可之分析級試藥,以及蒸餾水或同等純度的水。

C.3.1 不含羰基化合物之乙醇

依下列純化:

將乙醇 500 mL 及 2,4-二硝基苯肼 5 g,與 5 滴氫氯酸溶液(C.3.3)—起煮沸 2 至 3 h,使用長約 300 mm 及直徑約 25 mm 之 Widmer 蒸餾管柱或任何其他合 適蒸餾管柱緩慢蒸餾乙醇,捨棄去最初之 50 mL 餾出物並收集緊接在後的 400 mL,捨棄剩餘部分。如餾出物有顏色,則重新蒸餾之。

- C.3.2 周遭溫度下在乙醇(C.3.1)中之二硝基苯肼飽和溶液
- C.3.3 密度(ρ)約 1.19 g/mL 且濃度約 38 %(m/m)之氫氯酸溶液
- C.3.4 在 70 %(V/V)乙醇溶液(C.3.1)中之 100 g/L 氫氧化鉀溶液。
- C.3.5 相當於羰基化合物以乙醛計為 0.440 g/L 之羰基化合物標準溶液

稱取 1,200 g 苯乙酮,準確至 0.0001 g,使其溶解於少量乙醇(C.3.1)中。定量轉移至 100 mL 單標線量瓶中,以相同品質乙醇稀釋至標線並混合之。取此溶液 10.0 mL,轉移至 100 mL 單標線量瓶中,以乙醇(C.3.1)稀釋至標線並混合之。

此標準溶液 1 mL 含有羰基化合物以乙醛計為 440 μg。

C.4 器具

一般實驗室用器具及下列器具。

C.4.1 水浴

能控制於 50 ℃±2 ℃。

C.4.2 試管

附有磨砂玻璃塞。

- C.4.3 分光光度計
- C.4.4 光電吸光比色計(photoelectric absorptiometer)

配備濾光片,以確保在 445 nm 處之最大透光率。

C.5 步驟

C.5.1 試驗分樣

取 1.0 mL 實驗室樣品,並將其置於 1 個試管(C.4.2)中。

C.5.2 空白試驗

測定時,同時進行空白試驗,依相同步驟且測定所有使用試藥之用量相同, 惟試驗分樣以 1.0 mL 乙醇(C.3.1)取代。

C.5.3 校正圖準備

C.5.3.1 稀釋標準溶液製備

用於製備標準比色溶液。

將表 C.1 所示羰基化合物標準溶液(C.3.5)體積,依序置入 7 個 25 mL 單標線量瓶中,並以不含羰基化合物之乙醇(C.3.1)稀釋至標線。

表 C.1 羰基化合物標準溶液(C.3.5)體積、該體積相當於羰基化合物以 CH₃CHO 計的質量、及該體積的稀釋標準溶液 1 mL 中羰基化合物質量之對照表

羰基化合物標準溶液	相當於羰基化合物以	稀釋標準溶液 1 mL 中羰
(4.5)體積	CH ₃ CHO 計的質量	基化合物質量
(mL)	(µg)	(µg)
0 ^(a)	0	0
0.15	66.0	2.6
0.25	110.0	4.4
0.50	220.0	8.8
0.75	330.0	13.2
1.00	440.0	17.6
1.25	550.0	22.0
註 ^(a) 補償溶液。	ı	1

C.5.3.2 標準比色溶液製備

用於置入光徑長度 1 cm 吸光槽中進行光度量測。

每種稀釋標準溶液(C.5.3.1)各取 1.0 mL,依序置入 7 支試管中。

C.5.3.3 顯色

每一試管中加入 1.0 mL 之 2,4-二硝基苯肼溶液(C.3.2)及 1 滴氫氯酸溶液(C.3.3),以塞子塞住試管並於溫度控制在 $50 \text{ $^{\circ}$C} \pm 2 \text{ $^{\circ}$C}$ 之水浴(C.4.1)上加熱 30 min,使之冷卻,加入 5.0 mL 氫氧化鉀溶液(C.3.4),混合並使之靜置 5 min。

C.5.3.4 光度量測

使用波長設定在 445 nm 附近之分光光度計(C.4.3)或使用配備適當濾光片之 光電吸光比色計(C.4.4),首先以乙醇(C.3.1)將儀器調整至零吸光度後,立即 對每種標準比色溶液進行光度測量。

C.5.3.5 繪圖

由該等標準比色溶液(C.5.3.2)吸光度減去補償溶液吸光度,繪製具有,例:以 1 mL 每種稀釋標準溶液(C.5.3.1)中羰基化合物質量(μg)作為橫坐標及相對應吸光度修正值作為縱坐標之圖形。

C.5.4 測定

C.5.4.1 顯色

依 C.5.3.3 規定步驟處理試管中之試驗分樣(C.5.1)。

C.5.4.2 光度量測

以乙醇(C.3.1)將儀器調整至零吸光度後,立即依 C.5.3.4 規定步驟對試驗溶液及空白試驗溶液進行光度量測。

備考:如吸光度超過校正圖之最大值,則重複測定(C.5.4),使用以適當體積(不超過 4.0 mL)乙醇(C.3.1)稀釋實驗室樣品 1.0 mL 所製備試驗溶液之 1.0 mL 作為試驗分樣。

C.6 結果表示

藉由校正圖(C.5.3.5),確定對應於光度量測值之羰基化合物質量。

羰基化合物含量[% (m/m)],以乙醛計,依下式求得。

$$\frac{(m_1 - m_0) \times 100}{1.0 \times \rho \times 10^6} \times \eta_{\rm D} = \frac{m_1 - m_0}{\rho \times 10^4} \times \eta_{\rm D}$$

式中, m₀:空白試驗溶液所測得羰基化合物質量(μg)

m₁ : 試驗溶液所測得羰基化合物質量(μg)

ρ : 樣品在 20 ℃ 時之密度(g/mL)(參照 A.3)

n :試驗溶液稀釋後體積(參照 C.5.4.2 之備考)與測定用分取量體積之比 (如試驗分樣未稀釋,**n**等於 1)

1.0:試驗分樣(C.5.1)體積(mL)

附錄 D

(規定)

工業用乙醇試驗法一中等量羰基化合物含量估計之滴定法

D.1 滴用範圍

本附錄規定工業用乙醇中存在中等量羰基化合物含量估計之滴定法。。

本方法適用於具羰基化合物含量以乙醛計在 0.00025%(m/m)與 0.01%(m/m)間之產品。

備考:此種工業上使用之方法,僅可測定在規定條件下發生反應之羰基化合物。

D.2 方法概要

在 溴酚藍作為指示劑之情況下,氯化羥銨與試驗分樣中之羰基化合物反應,並 以氫氧化鈉標準體積溶液滴定所生成之氫氯酸。

D.3 試藥

分析過程僅能使用經認可之分析級試藥,以及蒸餾水或同等純度的水。

D.3.1 氯化羥銨試藥

警告:具腐蝕性及刺激性,避免接觸眼睛及皮膚。

將氯化羥銨 4 g 溶解於 20 mL 水中,並以 95 %(V/V)乙醇稀釋至 200 mL。在 沸水浴上加熱回流 30 min,冷卻至周遭溫度,加入 5 mL 溴酚藍溶液(4.4)及剛 好足夠產生二色性綠色之氫氧化鈉溶液(4.2)。

- D.3.2 c(NaOH)=0.1 mol/L 之氫氧化鈉標準體積溶液
- C(HCI)=0.1 mol/L 之氫氯酸標準體積溶液
- D.3.4 2 g/L 溴酚藍之乙醇溶液

將溴酚藍 0.2 g 溶解於 1.5 mL 氫氧化鈉溶液(4.2)中,並以 95 %(V/V)乙醇稀釋 至 100 mL。

D.4 器具

一般實驗室用器具及下列器具。

D.4.1 錐形瓶

容量 150 mL,附有磨砂玻璃塞。

D.5 步驟

D.5.1 試驗分樣

取實驗室樣品 50 mL±0.1 mL,並將其置入 1 個錐形瓶(D.4.1)中。

D.5.2 測定

將 50 mL 氯化羥銨試藥(D.3.1)置入第2個錐形瓶(D.4.1),用作色標。

將 1.25 mL 溴酚藍溶液(D.3.4)加入裝有試驗分樣(D.5.1)之錐形瓶中,並逐滴加入氫氧化鈉溶液(D.3.2)或氫氯酸溶液(D.3.3),直至顏色匹配色標。然後每一錐形瓶中加入 25 mL 氯化羥銨試藥(D.3.1)並塞住裝有色標之錐形瓶。

不緊塞裝有試驗溶液之錐形瓶,並於沸水浴上加熱 10 min。由水浴中取出錐

形瓶,冷卻至周遭溫度,以氫氧化鈉溶液(D.3.2)滴定溶液,直到顏色盡可能接近色標。

D.6 結果表示

羰基化合物含量[%(m/m)],以乙醛計,依下式求得。

$$\frac{0.004405\times V\times 100}{50\times \rho} \underline{=} \frac{0.00881\times V}{\rho}$$

式中, V : 測定所使用氫氧化鈉標準體積溶液(D.3.2)之體積(mL)

ρ : 樣品在 20 ℃時之密度(g/mL)(參照 A.3)

0.004405 :相當於 c(NaOH) = 0.100 mol/L 氫氧化鈉溶液 1 mL,以乙醛計

之羰基化合物質量(g)。

50 : 試驗分樣(D.5.1)體積(mL)

備考:如所使用標準體積溶液濃度與試藥規定濃度不一致,宜進行適當修正。

附錄E

(規定)

工業用乙醇試驗法一醛類含量測定之目視比色法

E.1 滴用範圍

本附錄規定工業用乙醇中甲醇含量測定之目視比色法。 本方法適用於具甲醇含量在 0.1 %(V/V)至 1.50 %(V/V)間之產品。

E.2 方法概要

試驗分樣中存在之醛類與希夫試藥(Schiff reagent)反應,將所得顏色與已知含量 乙醛標準比色溶液之顏色進行目視比較。

E.3 試藥

分析過程僅能使用經認可之分析級試藥,以及蒸餾水或同等純度的水。

E.3.1 不含醛類之 95 %(V/V)乙醇

依下列純化:

將無水乙醇 1,500 mL 與間苯二胺 15 g 於回流下煮沸 2 h。蒸餾混合物,捨棄餾出物之最初與最終 50 mL 餾分。加入適量水並混合之,將濃度調整至 95 %(V/V)。

使用 E.5 之規定步驟,以查證純化後之乙醇是否不含醛類。

E.3.2 希夫試藥

警告:鹼性品紅(basic fuchsin)為致癌物,避免皮膚接觸鹼性品紅及其溶液與吸入其粉塵。

E.3.2.1 製備

將水 1,500 mL 置入 3,000 mL 錐形瓶中,加入 4,500 g ± 0,005 g 對玫瑰苯胺鹽酸鹽(鹼性品紅)並旋轉錐形瓶使之溶解。加入 9.6 g ± 0.05 g 偏二亞硫酸鈉[焦亞硫酸鈉($Na_2S_2O_5$)],混合後,使之靜置 5 min 至 10 min。加入約 295 g/L 之硫酸溶液 40 mL,充分混合後,以塞子塞住錐形瓶,並使之靜置約 12 h。必要時,以活性碳處理,使溶液脫色。

E.3.2.2 游離二氧化硫含量測定及調整

將 10 mL 無色試藥(E.3.2.1)移入 250 mL 錐形瓶中,加入水 20 mL 及新配製 澱粉溶液 5 mL,以 $c(1/2 \text{ I}_2)=0.1 \text{ mol/L}$ 碘標準體積溶液滴定,直至剛好得到 特徵深藍色。

備考: $c(1/2 I_2) = 0.1 \text{ mol/L}$ 碘溶液 1 mL,相當於 $0.0032 g \geq SO_2$ 。

如游離二氧化硫含量未在最佳範圍內(每 100 mL 試藥 0.18 g 至 0.31 g), 視情況情調整之,以添加偏二亞硫酸鈉之計算量來增加含量,或以鼓泡空氣通過試藥溶液來減少含量。

E.3.3 相當於 1 g/L 乙醛之乙醛標準溶液

稱取 0.6930 g 乙醛氨[CH₃CH(NH₂)OH], 準確至 0.0001 g, 並使其溶解於乙醇

(E.3.1)中。將溶液定量轉移至 500 mL 單標線量瓶中,以相同品質乙醇稀釋至標線並混合之。

此標準溶液 1 mL 含有 0.001 g 乙醛。

備考:如無法獲得分析級乙醛氨,依下列方式純化工業級產品。

將乙醛氨約 5 g 以少量無水乙醇溶解,加入 2 倍體積無水乙醚 $(C_2H_5OC_2H_5)$ 使其沉澱。使用布克納(Buchner)漏斗形玻璃過濾器過濾沉 澱,以更多之乙醚洗滌後,立即將其轉移至裝有密度 (ρ) 約 1.84 g/mL 且濃度為 98 %(m/m)硫酸之真空乾燥器中,並使之乾燥 3 h 至 4 h。如必要,重複純化,直至產品無色。

警告:乙醚高度易燃且其蒸氣有害,避免吸入蒸氣。

E.3.4 相當於 0.1 g/L 乙醛之乙醛標準溶液

將 25.0 mL 乙醛標準溶液(E.3.3)轉移至 250 mL 單標線量瓶中,以乙醇(E.3.1) 稀釋至標線並混合之。

此標準溶液 1 mL 含有乙醛 0.0001 g。

E.4 器具

一般實驗室用器具及下列器具。

E.4.1 比色管

容量約20 mL,附有磨砂玻璃塞,10 mL及14 mL處具刻度。

E.4.2 附有刻度之吸量管

容量 20 mL, 刻度準確至 0.02 mL。

E.5 步驟

E.5.1 試驗分樣

使用 1 支附有刻度之吸量管(E.4.2),量取實驗室樣品 3.0 mL 至 1 支比色管 (E.4.1)中。

E.5.2 試驗溶液及標準比色溶液製備

將表 E.1 所示體積之乙醛標準溶液(E.3.4), 依序置入 6 個 100 mL 單標線量瓶中,以乙醇(E.3.1)稀釋至標線並混合之。

使用附有刻度之吸量管(E.4.2),將此等稀釋之乙醛標準溶液每種各量取 3.0 mL,依序置人6支比色管(E.4.1)中。

依下述處理每一比色管之內容物,包括裝有試驗分樣(E.5.1)之比色管。

以水稀釋至 10 mL,並加入足量希夫試藥(E.3.2)使體積達到 14 mL,以塞子塞住比色管且混合溶液(最好同時),混合後使之靜置 25 min。

相當於乙醛質量
(g)
0.0002
0.0003
0.0005
0.0007
0.0009
0.0010

表 E1 乙醛標準溶液(E.3.4)體積及其相當於乙醛質量之對照表

E.5.3 測定

在彌散日光(dispersed daylight)下,比較試驗溶液顏色與標準比色溶液顏色。 備考:如試驗溶液顏色比濃度最高之標準比色溶液顏色深,則使用以乙醇 (E.3.1)適當稀釋之更多實驗室樣品重複試驗,並於計算結果時考量此 點。

E.6 結果表示

醛類含量[% (m/m)],以乙醛計,依下式求得。

 $\frac{m}{\rho}$

式中,m: 顏色與試驗溶液顯色匹配最接近之稀釋標準溶液,其製備所使用之 乙醛質量(g)(參照表 E.1)

ρ: 樣品在 20 ℃時之密度(g/mL)(參照 A.3)

附錄F

(規定)

工業用乙醇試驗法一水互溶性試驗

F.1 滴用範圍

本附錄規定工業用乙醇之水互溶性試驗。

F.2 方法概要

在規定條件下添加水至試驗分樣,並檢查乳光(opalescence)。

F.3 試藥

分析過程僅能使用經認可之蒸餾水或同等純度的水。

F.4 器具

一般實驗室用器具及下列器具。

F.4.1 内斯勒(Nessler)比色管 2 支

容量 100 mL。

F.5 步驟

F.5.1 試驗分樣

取實驗室樣品 5 mL 或當事人間協議之不同體積。

F.5.2 試驗

將試驗分樣(E.5.1)置入第 1 支內斯勒比色管(E.4.1)中,並以水稀釋至 100 mL 標線,混合並將溫度調整至 20 ℃附近。將水 100 mL 置入第 2 支內斯勒比色管中。

使用第 2 支裝水之內斯勒比色管作為標準,在黑色背景及側面照明下,垂直檢查裝試驗溶液之比色管是否有乳光。

F.6 結果表示

報告試驗分樣之稀釋比及有乳光或無乳光。

附錄G

(規定)

工業用乙醇試驗法 - 甲醇含量 $[0.01\%(V/V)\sim0.20\%(V/V)]$ 測定之光度法

G.1 滴用範圍

本附錄規定工業用乙醇中甲醇含量測定之光度法。

本方法適用於具甲醇含量在 0.01 %(V/V)至 0.20 %(V/V)間之產品。

G.2 方法概要

以加入磷酸之過錳酸鉀溶液氧化試驗分樣中存在之甲醇,並轉化為甲醛,而所生成之甲醛與變色酸反應產生紫色顯色。

在波長 570 nm 附近,可得紫色顯色之光度量測。

G.3 試藥

分析過程僅能使用經認可之分析級試藥,以及蒸餾水或同等純度的水。

G.3.1 加入磷酸之 30 g/L 過錳酸鉀溶液

將過錳酸鉀 3 g 溶於少量水中,加入密度(ρ)為 1.69 g/mL 之正磷酸溶液 15.5 mL,用水稀釋至 100 mL 並混合之。

G.3.2 100 g/L 偏二亞硫酸鈉[焦亞硫酸鈉(Na₂S₂O₅)]溶液

將焦亞硫酸鈉 10g溶於水中,並用水稀釋至100 mL。

G.3.3 加入硫酸之變色酸(4,5-二羥-2,7-萘二磺酸)溶液

G.3.3.1 溶液製備

將變色酸或其二鈉鹽 0.1 g 溶解於 10 mL 水中,冷卻時加入密度 (ρ) 約 1.81 g/mL 且濃度約 90 %(m/m)之硫酸溶液 90 mL,並混合之。

使用時準備此溶液。

如在補償溶液(G.5.3.1)或空白試驗溶液(G.5.2)顯色過程中溶液發生顯著顯色,則依 G.3.3.2 規定步驟純化變色酸或其二鈉鹽。

G.3.3.2 變色酸之純化

將變色酸或其二鈉鹽約 10 g 溶解於 25 mL 水中,如使用二鈉鹽,冷卻時加入密度(ρ)約 1.84 g/mL 之硫酸 2 mL,將其轉化為游離酸。加入甲醇 50 mL,加熱至沸騰並以具 CNS 7311 規定濾孔代號 4 或 ISO 4793 規定孔隙率等級 P10 之濾板的玻璃過濾器進行過濾。

溶液中加入 2-丙醇 100 mL,使變色酸沉澱,以具 CNS 7311 規定濾孔代號 4 或 ISO 4793 規定孔隙率等級 P10 之濾板的玻璃過濾器收集沉澱物,並以少量 2-丙醇洗滌。可使之乾燥,最初於空氣中乾燥,最終在以密度(ρ)約 1.84 g/mL 且濃度約 98 %(m/m)之硫酸作為乾燥劑的乾燥器中乾燥。

如純化後空白試驗溶液仍有顏色,則捨棄變色酸。

G.3.4 相當於 0.05 %(V/V)甲醇之甲醇標準溶液

將無水甲醇 1.00 mL 置入 250 mL 單標線量瓶中,加入相當於無水乙醇 99 mL

之無甲醇的乙醇,用水稀釋至標線並混合之。

將此溶液 25.0 mL 放入 200 mL 單標線量瓶中,用水稀釋至標線並混合之。 此標準溶液 1 mL 含有無水甲醇 0.0005 mL。

G.4 裝置

一般實驗室用器具及下列裝置。

G.4.1 水浴

能控制在 70 ℃±2 ℃。

G.4.2 分光光度計

G.4.3 光電吸光比色計(photoelectric absorptiometer)

配備濾光片,以確保在 570 nm 處之最大透光率。

G.5 步驟

G.5.1 試驗分樣及試驗溶液製備

取相當於無水乙醇 5.0 mL 之實驗室樣品體積(V₂)作為試驗分樣,並將其置入 100 mL 單標線量瓶中,用水稀釋至標線並混合之,以製備試驗溶液。

G.5.2 空白試驗

測定時,同時進行空白試驗,依相同步驟且測定所有使用試藥之用量相同, 惟試驗分樣以相當於無水乙醇 5.0 mL 之無甲醇的乙醇體積取代。

G.5.3 校正圖準備

G.5.3.1 稀釋標準溶液製備

用於製備標準比色溶液。

將表 1 所示甲醇標準溶液(G.3.4)體積,依序置入 6 個 100 mL 單標線量瓶中, 以無甲醇的 5 %(V/V)乙醇水溶液稀釋至標線並混合之。

G.5.3.2 標準比色溶液製備

用於置入光徑長度 1 cm 吸光槽中進行光度量測。

每種稀釋標準溶液(G.5.3.1)各取 2.0 mL,依序置入 6 支試管中。

G.5.3.3 顯色

每一試管中加入 1.0 mL 過錳酸鉀溶液(G.3.1),經 15 min 後加入 0.6 mL 偏二亞硫酸鈉(G.3.2)。對此等無色溶液加入 10.0 mL 變色酸溶液(G.3.3),同時以冰冷卻,並於溫度控制在 $70 \text{ $^{\circ}$C$} \pm 2 \text{ $^{\circ}$C}$ 之水浴(G.4.1)上加熱 20 min,由水浴中取出試管並使之冷卻。

備考 1. 如補償溶液顏色比最稀釋之標準比色溶液顏色更深,則依 G.3.3.2 之規定純化變色酸或其二鈉鹽。

備考 2. 每次使用一瓶新變色酸時,皆要準備新校正圖。

甲醇標準溶液(G.3.4)體積	相當於甲醇體積
(mL)	(mL)
0 ^(a)	0
1.00	0.0005
2.50	0.00125
5.00	0.0025
10.00	0.005
20.00	0.010
註 ^(a) 補償溶液。	1

表 G1 甲醇標準溶液(G.3.4)體積及其相當於甲醇體積之對照表

G.5.3.4 光度量測

使用波長設定於 570 nm 附近之分光光度計(G.4.2)或使用配備適當濾光片之光電吸光比色計(G.4.3),以 5% (V/V)乙醇水溶液將儀器調整至零吸光度後,對每種標準比色溶液(G.5.3.2)進行光度量測。

G.5.3.5 繪圖

由標準比色溶液(G.5.3.2)吸光度減去補償溶液吸光度,繪製具有,例:以標準溶液(G.5.3.1)中甲醇體積(mL)作為橫坐標及相對應吸光度修正值作為縱坐標之圖形。

G.5.4 測定

G.5.4.1 顯色

取 2.0 mL 試驗溶液(G.5.1),將其置於試管中,並依 G.5.3.3 之規定進行顯色。

G.5.4.2 光度量測

以 5% (V/V)乙醇水溶液將儀器調整至零吸光度後,依 G.5.3.4 之規定對試驗溶液及空白試驗溶液進行光度量測。

G.6 結果表示

藉由校正圖(G.5.3.5),確定對應於光度量測值之甲醇體積(mL)。甲醇含量[%(V/V)],依下式求得。

$$\frac{(V_1 - V_0) \times 100}{V_2}$$

式中, V₀ : 空白試驗溶液中甲醇體積(mL)

V1 :試驗溶液中甲醇體積(mL)

V₂ : 試驗分樣體積(mL)

附錄H

(規定)

工業用乙醇試驗法-甲醇含量 $[0.10\%(V/V)\sim1.50\%(V/V)]$ 測定之目視比色法

H.1 滴用範圍

本附錄規定工業用乙醇中甲醇含量測定之目視比色法。

本方法適用於具甲醇含量在 0.1 %(V/V)至 1.50 %(V/V)間之產品。

H.2 方法概要

以加入磷酸之過錳酸鉀溶液氧化試驗分樣中存在之甲醇,並轉化為甲醛,而所 生成之甲醛與希夫試藥(Schiff reagent)反應產生紫紅色顯色。將所得顏色與已知 含量甲醛標準比色溶液之顏色進行目視比較。

H.3 試藥

分析過程僅能使用經認可之分析級試藥,以及蒸餾水或同等純度的水。

H.3.1 加入磷酸之 30 g/L 過錳酸鉀溶液

將過錳酸鉀 3 g 溶於少量水中,加入密度 (ρ) 為 1.69 g/mL 之正磷酸溶液 15.5 mL,用水稀釋至 100 mL 並混合之。

H.3.2 加入硫酸之 50 g/L 草酸溶液

警告:皮膚接觸及吞食有害,避免接觸皮膚及眼睛。

將草酸 5 g 溶解於 50 %(V/V)硫酸溶液 100 mL 中,其中 50 %(V/V)硫酸溶液係由密度(ρ)約 1.84 g/mL 且濃度約 98 %(m/m)之硫酸溶液以水稀釋[1+1(V/V)]製備而得。

H.3.3 希夫試藥

警告:鹼性品紅(basic fuchsin)為致癌物,避免皮膚接觸鹼性品紅及其溶液與吸入其粉塵。

H.3.3.1 製備

將水 1,500 mL 置入 3,000 mL 錐形瓶中,加入 4,500 g ± 0,005 g 對玫瑰苯胺鹽酸鹽(鹼性品紅)並旋轉錐形瓶使之溶解。加入 9.6 g ± 0.05 g 偏二亞硫酸鈉[焦亞硫酸鈉(Na₂S₂O₅)],混合後,使之靜置 5 min 至 10 min。加入約 295 g/L 之硫酸溶液 40 mL,充分混合後,以塞子塞住錐形瓶,並使之靜置約 12 h。必要時,以活性碳處理,使溶液脫色。

H.3.3.2 游離二氧化硫含量測定及調整

將 10 mL 無色試藥(4.3.1)移入 250 mL 錐形瓶中,加入水 20 mL 及新配製澱粉溶液 5 mL,以 $c(1/2\ I_2)=0.1\ mol/L$ 碘標準體積溶液滴定,直至剛好得到特徵深藍色。

備考: $c(1/2 I_2) = 0.1 \text{ mol/L}$ 碘溶液 1 mL,相當於 0.0032 g 之 SO_2 。

如游離二氧化硫含量未在最佳範圍內(每 100 mL 試藥 0.18 g至 0.31 g),視情況情調整之,以添加偏二亞硫酸鈉之計算量來增加含量,或以鼓泡空氣

通過試藥溶液來減少含量。

H.3.4 相當於 0.2 %(V/V)甲醇之甲醇標準溶液

將無水甲醇 2.00 mL 置入 1,000 mL 單標線量瓶中,加入相當於無水乙醇 98 mL 之無甲醇的乙醇,用水稀釋至標線並混合之。

此標準溶液 1 mL 含有無水甲醇 0.002 mL。

H.4 器具

一般實驗室用器具及下列器具。

H.4.1 比色管

容量約 20 mL,附有磨砂玻璃塞。

H.4.2 水浴

能控制於 20 ℃±1 ℃。

H.5 步驟

H.5.1 試驗分樣及試驗溶液製備

取相當於無水乙醇 10.0 mL 之實驗室樣品體積 (V_1) 作為試驗分樣,並將其置入 100 mL 單標線量瓶中,用水稀釋至標線並混合之,以製備試驗溶液。將此試驗溶液 50 mL 移入 1 支比色管(H.4.1)中。

H.5.2 稀釋標準溶液製備

將表 H.1 所示甲醇標準溶液(H.3.4)體積,依序置入 5 個 100 mL 單標線量瓶中,以無甲醇的 10 %(V/V)乙醇水溶液稀釋至標線並混合之。

甲醇標準溶液(H.3.4)體積	相當於甲醇體積
(mL)	(mL)
5.00	0.010
10.0	0.020
25.0	0.050
50.0	0.100
75.0	0.150

表 H.1 甲醇標準溶液(H.3.4)體積及其相當於甲醇體積之對照表

H.5.3 標準比色溶液製備

每種稀釋標準溶液(H.5.2)各取 5.0 mL,依序置入 5 支比色管(H.4.1)中。 依下述處理每一比色管之內容物,包括裝有 5.0 mL 試驗溶液(H.5.1)之比色管。 加入 2.0 mL 過錳酸鉀溶液(H.3.1),混合並使之在溫度控制於 20 $^{\circ}$ C±1 $^{\circ}$ C的水浴(H.4.2)中靜置 10 min。然後加入 2.0 mL 草酸溶液(H.3.2)並混合之。此步驟時,溶液宜為無色且無錳沉澱。加入 5 mL 希夫試藥(H.3.3),混合並使之靜置 1 h。

H.5.4 測定

垂直檢查比色管,並記錄標準比色溶液顏色與試驗溶液顯色匹配之最接近者。

備考:如有疑慮,選擇濃度較低之標準比色溶液。

H.6 結果表示

甲醇含量[%(V/V)],依下式求得。

$$\frac{V_0 \times 100}{V_1}$$

式中, V_0 : 由稀釋標準溶液(H.5.2)所製備標準比色溶液,其顏色與試驗溶液顯

色匹配之最接近者的甲醇體積(mL)

 V_1 : 試驗分樣體積(mL)

附錄I

(規定)

工業用乙醇試驗法一酯類含量測定之皂化後滴定法

I.1 適用範圍

本附錄規定工業用乙醇中酯類含量測定之皂化後滴定法。

本方法適用於具酯類含量以乙酸乙酯計在 0.005 %(m/m)~0.15 %(m/m)範圍內之產品。

I.2 方法概要

以煮沸之過量氫氧化鈉標準體積溶液,皂化試驗分樣中存有之酯類;在酚酞作為 指示劑之情況下,以氫氯酸標準體積溶液滴定殘留之氫氧化鈉,從而測定皂化 用量。

I.3 試藥

除另有規定外,分析過程僅能使用經認可之分析級試藥,以及新近製備不含二氧化碳之蒸餾水或同等純度的水。

I.3.1 不含二氧化碳之水

將蒸餾水煮沸並使其在附有瓶塞之燒瓶中冷卻,且瓶塞連接內裝鹼石灰之乾燥管。

I.3.2 氫氧化鈉標準體積溶液

 $c(NaOH) = 0.1 \text{ mol/L} \circ$

I.3.3 氫氯酸標準體積溶液

 $c(\text{HC1}) = 0.1 \text{ mol/L} \circ$

I.3.4 5 g/L 酚酞乙醇溶液

將 0.5 g 酚酞溶解於 $100 \text{ mL} \ge 95\%(\text{V/V})$ 乙醇中,並加入氫氧化鈉標準體積溶液(1.3.2),直至獲得淡粉紅色。

I.4 器具

一般實驗室用器具及下列器具。

I.4.1 硼矽玻璃錐形瓶

容量 500 mL, 磨砂瓶口。

I.4.2 回流冷凝器

水冷式,具磨砂玻璃接頭以安裝於錐形瓶(I.4.1)。

備考:依下列清潔器具:

將乙醇與氫氧化鈉溶液之混合物(任意比例)放入錐形瓶(I.4.1)中,連接 回流冷凝器(I.4.2)並在回流下緩慢加熱混合物數分鐘。

捨棄混合物並清潔錐形瓶與冷凝器,首先以自來水洗滌,然後以蒸餾 水潤洗數次。

I.5 步驟

I.5.1 試驗分樣

實驗室樣品取樣 50.0 mL。如以乙酸乙酯計之酯類含量預計為 0.01 %(m/m)以下,則取 100 mL±0.1 mL。

I.5.2 測定

- (a) 將試驗分樣(I.5.1)放入錐形瓶(I.4.1)中,加入 20 mL 水與 0.5 mL 酚酞溶液 (I.3.4)。中和溶液[通常以氫氧化鈉標準體積溶液(I.3.2)直到呈現粉紅色並持續約 15 s]。
- (b) 加入 10.0 mL 氫氧化鈉標準體積溶液(I.3.2)。安裝回流冷凝器(I.4.2)並在 沸水浴中加熱 1 h。於回流冷凝器頂部安裝乾燥管,而乾燥管內裝鹼石灰, 並在水中冷卻錐形瓶。取下內裝鹼石灰之乾燥管,以 2 份 10 mL 水清洗 回流冷凝器內部,將洗出液收集於在錐形瓶中。拆開錐形燒瓶並以 10 mL 水清洗磨砂瓶口,再次將洗出液收集於錐形瓶中。
- (c) 以氫氯酸標準體積溶液(I.3.3)小心滴定溶液,直到粉紅色消失。

I.5.3 空白試驗

使用 I.5.2(b)與 I.5.2(c)之規定步驟,對來自測定(I.5.2)之中性溶液進行空白試驗。

I.6 結果表示

酯類含量[%(m/m)],以乙酸乙酯($CH_3COOC_2H_5$)計,依下式計算。

$$\frac{0.0088 \times (V_2 - V_1) \times 100}{V_0 \, \rho} \underline{=} \frac{0.88 \times (V_2 - V_1)}{V_0 \, \rho}$$

式中, V_0 : 試驗分樣(6.1)體積(mL)

 V_1 : 測定所使用之氫氯酸溶液(I.3.3) 體積(mL)

 V_2 : 空白試驗所使用之氫氯酸溶液(I.3.3)體積(mL)

ρ : 樣品在 20 ℃時之密度(g/mL)(參照 A.3)

0.0088 :相當於 c(NaOH) = 0.100 mol/L 氫氧化鈉溶液 1 mL,以乙酸乙酯

計之酯質量(g)。

備考:如所使用標準體積溶液濃度與試藥規定濃度不一致,宜進行適當修正。

附錄J

(規定)

工業用乙醇試驗法-烴類含量測定之蒸餾法

J.1 滴用範圍

本附錄規定工業用乙醇中烴類含量估計之蒸餾法。

J.2 方法概要

在存有水之情況下蒸餾試驗分樣,餾出物加入飽和氯化鈉溶液並量測不溶性烴 類之體積。

J.3 試藥

分析過程僅能使用經認可之分析級試藥及蒸餾水或同等純度的水。

J.3.1 飽和氯化鈉溶液

於周遭溫度下之使氯化鈉溶液飽和。

J.4 器具

一般實驗室用器具及下列器具。

J.4.1 蒸餾瓶

圓底,容量 4,000 mL。

J.4.2 亨泊(Hempel)分餾管柱

填充高度 230 mm, 如圖 J.1 所示,填充直徑為 10 mm~12 mm 之玻璃珠

J.4.3 李比希(Liebig)冷凝器

標稱外層玻璃長度 400 mm, 附有磨砂玻璃接頭。

J.4.4 承液器

用於烴類含量估計,如圖 J.2 所示。

J.5 步驟

J.5.1 試驗分樣

實驗室樣品取樣 1,500 mL±1 mL。

J.5.2 測定

將試驗分樣(J.5.1)放入蒸餾瓶(J.4.1)中並加入水 500 mL。將分餾管柱(J.4.2)連接於蒸餾瓶,並使其支管(side arm)連接於附有接頭之李比希冷凝器(J.4.3)。加熱蒸餾瓶,使蒸餾速率不超過每分鐘 30 滴,並以承液器(J.4.4)收集餾出物。當餾出物達到承液器縮窄部位之標線時(約 13 mL 餾出物),停止蒸餾。將足量之飽和氯化鈉溶液(J.3.1)加入承液器中,使液位介於在 1 mL 與 2 mL 刻度之間。經由旋轉承液器,以混合內容物,注意不要倒置。使其靜置,直至液體分層。必要時,再次旋轉承液器,以分離附著在承液器內壁之任何烴相液滴。讀取承液器刻度上之上層液體積。

J.6 結果表示

使用圖 J.3 中之圖表,對應上層液體積(J.5.2),可獲得烴類含量[%(V/V)]。

備考:圖 J.3 為經驗圖,其反映試樣中全部烴類含量不會餾出於前 13 mL 餾出物之事實。此圖為非線性,因為樣品之烴類蒸餾速率與烴類含量不成比例。

單位: mm

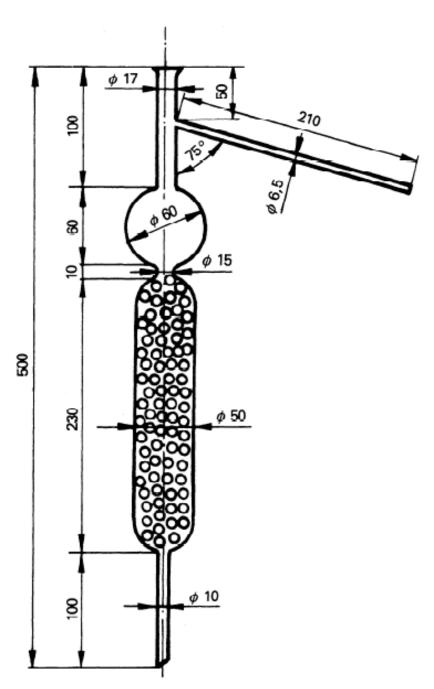


圖 J.1 亨泊分餾管柱(J.4.2)圖示

單位: mm

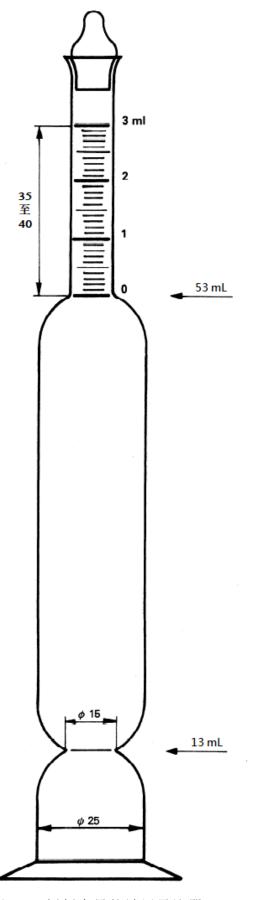


圖 J.2 烴類含量估計用承液器(J.4.4)

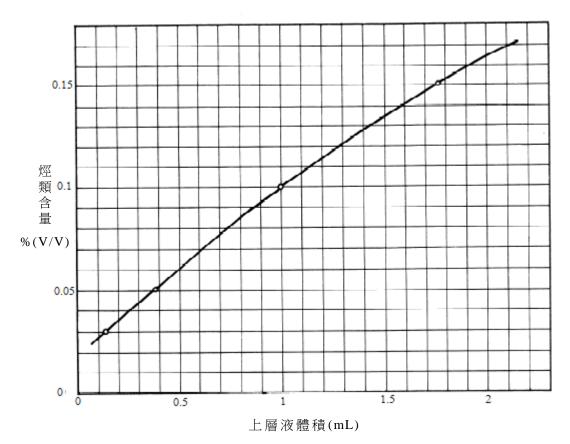


圖 J.3 烴類含量估計圖

附錄 K

(規定)

工業用乙醇試驗法-糠醛偵檢試驗

K.1 適用範圍

本附錄規定工業用乙醇檢查是否存有糠醛之試驗。

K.2 方法概要

以苯胺與乙酸處理試驗分樣,存有糠醛時,將導致特有之紅色形成。

K.3 試藥

分析過程僅能使用經認可之分析級試藥。

K.3.1 苯胺(C₆H₅NH₂)

臨使用前經過蒸餾。

K.3.2 乙酸

密度(ρ)為 1.05 g/mL 之冰醋酸。

K.4 器具

一般實驗室用器具。

K.5 步驟

K.5.1 試驗分樣

實驗室樣品取樣 10 mL,或由當事人間協議其他取樣量。

K.5.2 試驗

將試驗分樣(J.5.1)放入試管中,加入 0.5~mL 苯胺(J.3.1)與 1~mL 乙酸(J.3.2)。混合併觀察是否立即或在試驗進行後 3~min 內呈現紅色。

K.6 結果表示

依試驗(J.5.2)中是否形成紅色,個別報告為糠醛檢出或糠醛未檢出。

附錄 L

(規定)

工業用乙醇試驗法一過錳酸鉀反應時間測定

L.1 適用範圍

本附錄規定工業用乙醇之過錳酸鉀反應時間測定法。

L.2 用語及定義

L.2.1 過錳酸鉀反應時間(permanganate time)

將 0.2 g/L 過錳酸鉀溶液 2 mL 加入 50 mL 試樣後,其顏色匹配硝酸氧鈾-氯化亞鈷色標所需之時間(min)。

L.3 方法概要

規定條件下將過錳酸鉀溶液加入試驗分樣,測定此試驗溶液顏色匹配硝酸氧鈾-氯化亞鈷色標所需之時間(min)。

L.4 試藥

除另有規定外,分析過程僅能使用經認可之分析級試藥及蒸餾水或同等純度的 水。

L.4.1 0.2 g/L 過錳酸鉀溶液

為產生安定之淡粉紅色,使用經預先煮沸 30 min 之水與充分稀釋的過錳酸鉀溶液。在製備溶液之前冷卻水。

臨使用前製備此溶液並避光。

L.4.2 硝酸氧鈾-氯化亞鈷色標

50 g/L 六水合氯化亞鈷(C₀Cl₂·6H₂O)溶液 5 mL 中,加入 40 g/L 六水合硝酸氧鈾[UO₂(NO3)₂·6H₂O]溶液 7 mL,以水稀釋至 50 mL。

L.5 器具

注意:清潔使用過之玻璃器皿,以避免任何污染之風險。

一般實驗室用器具及下列器具。

L.5.1 恆溫水浴

能控制在 15 ℃± 0.2 ℃。

L.5.2 比色管 2 支

容量 100 mL,透明且無色之玻璃,刻度為 50 mL,附有磨砂玻璃塞。

L.5.3 滴定管

容量 10 mL, 刻度準確至 0.05 mL。

L.6 步驟

L.6.1 試驗分樣

收樣後儘快進行試驗。(樣品儲存依 A.2 之規定。)

比色管(L.5.2)之 1 支,首先以密度(ρ)約 1.19 g/mL 且含量約 38 %(m/m)之氫氯酸溶液 15 mL 至 20 mL 潤洗,然後以自來水潤洗 6 次,以蒸餾水潤洗 2 次,

最後以些許實驗室樣品潤洗。

立即在溫度約 15 ℃下將更多實驗室樣品加滿至比色管之標線處。

L.6.2 測定

第 2 支比色管(L.5.2)以硝酸氧鈾-氯化亞鈷色標(L.4.2)加滿至標線處。

將裝有試驗分樣(L.6.1)之比色管放入控制於 15 °C±0.2 °C的水浴(L.5.1)中,使水浴之水位在比色管頸部以下約 25 mL 處。15 min 後,由水浴中取出比色管,並使用滴定管(L.5.3)加入 2.0 mL 高錳酸鉀溶液(L.4.1),記錄時間,立即塞住比色管,搖動,然後將其置入水浴中。

每隔 1 min 由水浴中取出比色管,並在白色背景下垂直向下觀察顏色,與硝酸氧鈾-氯化亞鈷色標之顏色進行比較。試驗溶液避免暴露在強光下。

記錄試驗溶液顏色與硝酸氧鈾-氯化亞鈷色標相匹配之時間(min)。

L.7 結果表示

報告試驗溶液由加入過錳酸鉀溶液至顏色匹配硝酸氧鈾-氯化亞鈷色標之時間 (min)。

參考資料

- [1] BS 507: 1985 Specification for ethanol for industrial use
- [2] TIS part 2-2553(2010) Ethanol for Industrial Use
- [3] JAAS001:2012 Ethanol (Ethyl Alcohol)
- [4] GB/T 6820-2016 工業用乙醇

相對應國際標準

ISO 1388-1:1981 Ethanol for industrial use - Methods of test - Part 1: General

ISO 1388-2:1981 Ethanol for industrial use - Methods of test - Part 2: Detection of alkalinity or determination of acidity to phenolphthalein

ISO 1388-3:1981 Ethanol for industrial use – Methods of test – Part 3: Estimation of content of carbonyl compounds present in small amounts -- Photometric method

ISO 1388-4:1981 Ethanol for industrial use – Methods of test – Part 4: Estimation of content of carbonyl compounds present in moderate amounts – Titrimetric method

ISO 1388-5:1981 Ethanol for industrial use – Methods of test – Part 5: Determination of aldehydes content – Visual colorimetric method

ISO 1388-6:1981 Ethanol for industrial use – Methods of test – Part 6: Test for miscibility with water

ISO 1388-7:1981 Ethanol for industrial use – Methods of test – Part 7: Determination of methanol content (methanol contents between 0.01 and 0.20 % (v/v)) – Photometric method

ISO 1388-8:1981 Ethanol for industrial use – Methods of test – Part 8: Determination of methanol content (methanol contents between 0.10 and 1.50 % (v/v)) – Visual colorimetric method

ISO 1388-9:1981 Ethanol for industrial use – Methods of test – Part 9: Determination of esters content – Titrimetric method after saponification

ISO 1388-10:1981 Ethanol for industrial use – Methods of test – Part 10: Estimation of hydrocarbons content – Distillation method

ISO 1388-11:1981 Ethanol for industrial use - Methods of test - Part 11: Test for detection of furfural

ISO 1388-12:1981Ethanol for industrial use - Methods of test - Part 12: Determination of permanganate time

修訂日期

第一次修訂:64年04月29日

CNS 1397:2022

關鍵字:工業用乙醇;ethanol for industrial use;水溶混性;miscibility with water;内斯勒比色管;matched Nessler cylinders;乳光;opalescence;過錳酸鉀反應時間;permanganate time;硝酸氧鈾-氯化亞鈷色標;Cobalt(II) chloride and uranyl nitrate colour standard;羰基化合物;carbonyl compounds;中等量;moderate amounts;滴定法;titrimetric method;酚酞;phenolphthalein;鹼度;alkalinity;酸度;acidity;甲醇含量;methanol contents;目視比色法;visual colorimetric method;光度法;Photometric method;醛類;aldehydes;希夫試藥;Schiff reagent.

74. *** 00 ().	
建議單位	本局
目的及理由	参照現行版 BS 507: 1985 及 ISO 1388:1981 系列標準修訂, 以提昇檢驗技術,俾利管理查核所需。
起草委員或單位	許委員世輝
(含委辦案或補助案等之說明)	
建議案號	建-修 1110427
草案編號	草-修
編擬依據	1. BS 507:1985 Specification for ethanol for industrial use 2. ISO 1388-7:1981 Ethanol for industrial use — Methods of test — Part 7: Determination of methanol content (methanol contents between 0,01 and 0,20 vol.%) — Photometric method (2018 年確認)
編訂說明	考量業界尚有使用工業用乙醇之需求(例:酒精膏等燃料用途 及香氛產品等摻配用溶劑),爰參考 BS 及 ISO 標準修訂,俾 與國際接軌,供產品品質及檢驗有一致遵循準則。
出席委員	陳委員炳宏、朱委員漢文、委員、李委員佳謀、魏委員清助、 麥委員富德、林委員宗寬、林委員欽德、廖委員婉君、陳委 員琦瑜、蘇委員秀麗、何委員達仁、李委員煌恩、林委員成 原、蔡委員坤祥
列席單位	工業技術研究院材料與化工研究所、台塑石化股份有限公司、台灣中油公司煉製研究所、台灣中油股份有限公司、行政院環境保護署環境檢驗所、本局第六組
重點說明	1.本標準適用於工業用酒精。
(與編擬依據或編訂說 明之重大差異、重大修	2.表 1 增訂試驗項目「外觀」,規定無沉澱物或混濁及霧狀之
改事項、技術委員會爭	澄清液體;另「」須符合之規定。
議事項、針對標準之解	3.增訂第4節「取樣」,俾利試驗之前置準備。
說等)	4.增訂第5節「標示」,以確保消費者權益。
其他	其餘為文辭修正。